Advances in Knowledge-Based Systems, Data Science, and Cybersecurity 2 (2) 215-235 Received 02-04-2025; Accepted 16-05-2025; Published 23-05-2025

Smart Contracts- Vulnerabilities, CodeLlama Usage and Gas Driven
Detection

Natan Katz natan.katz@gmail.com
Kehilat Wrsaw 15B Tel Aviv

Corresponding Author: Natan Katz

Copyright © 2025 Natan Katz. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Smart contracts are a major tool in Ethereum transactions. Therefore, hackers can exploit
them by generating malicious code and using their vulnerabilities to perform malicious trans-
actions. This paper presents two successful approaches for detecting malicious contracts: one
uses opcode and relies on GPT2, and the other uses the Solidity source and a LORA fine-
tuned CodeLlama. Finally, we present an XGBOOST model that combines gas properties
and Hexadecimal signatures for detecting malicious transactions. This approach relies on
early assumptions that maliciousness is manifested by the uncommon usage of the contracts’
functions and the effort to pursue the transaction.

Keywords: LLM, Fine-tuning, CodeLlama, Smart contracts, Ethereum, ABI, Bayesian net-
works, Deep Learning, Causal Inference.

1. INTRODUCTION

Machine learning ML has become a tool in various technological domains. The appearance
of'tools such as ChatGPT [1] and DALL-E [2] made ML accessible to an enormous number
of users. However, ML learning influences even more aspects than the common generative
approaches: we can see the usage of ML in the medical world, in financial, and even in
less quantitative disciplines such as archaeology and history. It intrigues nearly everyone
that when we provide data samples to software, we enable it to extract novel insights. In
parallel to the rise of ML, cybersecurity has gained more focus lately. The increase in
network traffic, particularly in money transactions and the usage of financial information,
made most of us vulnerable to malicious web activities. One may expect that cyber and
ML will constantly shake hands. Indeed, we see a massive presence of ML in cybersecurity
applications. However, creating an ML solution for cyber is often a challenging task due to
the following reasons:

» Imbalanced data- Most of the traffic in cyber is benign: we seldom have traffic that contains
more than a single percent of malicious data. Since imbalanced data is one of the classical
obstacles in ML, we may suffer from a tall hurdle.

* Temporality- In most of the common ML applications, such as image detection or sentiment
analysis [3], we can confidently assume that we sample the data from a fixed distribution.

215

Citation: Natan Katz. Smart Contracts- Vulnerabilities, CodeLlama Usage and Gas Driven Detection. Advances in Knowledge-Based

Systems, Data Science, and Cybersecurity; Research2025;2(2):11.
Pageno.- 215-235

https://cybersecurityjournal.info/ | August 2025 Advances in Knowledge-Based Systems, Data Science, and Cybersecurity

In cybersecurity, the data is often temporal since the attacker and the defender experience an
evolution.

* Labeling- Unlike vision or text, where it is easy to label the data in advance (every junior high
pupil can say if the image is of a dog or a cat), labeling cyber data requires expert knowledge.

These obstacles impose an effort in nearly every cyber ML project. Performing ML projects
on blockchain may require even more effort since it may present novel challenges. This paper
describes potential cyber threats in the Blockchain and ML methods to solve them.

2. SMART CONTRACTS

The following section introduces the concept of smart contracts and the potential problems
we may encounter when using them that they may rise.

2.1 What is Ethereum?

In 2013, Vitalik Buterin had an idea to improve Bitcoin [4-11]. Rather than the block
including only transactions, Vitalik wanted it to include sources of code. His motivation
was the need to use the blockchain properties to develop decentralized applications, Dapps,
and through creating the world’s strongest supercomputer, [5, 7]. However, there was a tall
hurdle that Vitalik had to face: Bitcoin used a scripting language Bitcoin Script [5, 7], that
wasn’t adequate for Vitalik’s goal: This language wasn’t Turing Complete, namely, there
are logical problems that one cannot code using it. To achieve Turing completeness, one
had to enrich it with loops, a programming feature that Bitcoin Script didn’t support. The
developers wanted to prevent tedious effort, such as infinite loops, that can significantly
slow the network. Vitalik wanted to enrich Bitcoin Script with loops. He didn’t get his
request. Vitalik moved forward with his idea and established a new blockchain-based net-
work: Ethereum. While Bitcoin acts merely as a cryptocurrency, Ethereum indeed followed
Vitalik’s vision in two aspects:

* It became a platform for developers to create their applications and for users to run these
applications [7, 8, 12].

* In contrast to Bitcoin, Ethereum’s blocks contain, in addition to transactions, source codes as
well. One can run these codes on the network’s nodes.

These two achievements allow Ethereum to decentralize many computing tasks and, as men-
tioned above, develop many dApps. We can summarize with the words of Dr. Gavin Wood,
one of the Ethereum founders: Bitcoin Script is first and foremost a currency; this is one
particular application of a blockchain. However, it is far from the only application. To take a
past example of a similar situation, e-mail is a particular use of the internet, and undoubtedly
helped popularize it, but there are additional Internet usages [7]. Ethereum allows more
capabilities and requires a more clever environment. In the following sections, we will
describe these properties.

216

https://cybersecurityjournal.info/ | August 2025 Natan Katz

2.2 Ethereum Virtual Machine

We discussed in the previous section the need for improving blockchains with source code.
This improvement brings two threats[5, 6]:

* Infinite loops

* Public accessibility

In this section, we discussed the latter. A blockchain user has the entire chain on their private
computer. If we place the sources themselves on the blocks, we may suffer from the following
risks:

» The source codes can access the private drivers of the users.

« Ifit is plausible to add sources to the blocks, it is easy to deploy viruses

To overcome these risks [5, 7], every participant in Ethereum receives a virtual machine
that separates their Ethereum activities from the personal drivers: Ethereum Virtual Machine
EVM. The developers upload their sources to the chain, and EVM executes these sources.
The separation from the private drives enhances security.

2.3 What is a Smart Contract?

In a nutshell, smart contracts are merely contracts. The main differences between these
contracts and the common ’real world” contracts are [5, 6, 12—14]:

» Blockchains use them

* They are computer programs.

The concept of source-codes allows Dapps to use them as their back-end for managing the
API and the interaction with the blockchain itself. Why do we use the term ”contract™? 1
will refer to a great post [12], where the writer uses the idea carved on stone contracts. These
contracts provide a high level of trust. In a more modern example [12], one can consider a
vending machine: It will output a Diet Coke if you provide a certain amount of money and
press the button. One can see in FIGURE 1, that this procedure can be programmed [12].
We can create more sophisticated contracts [15], as one can see in FIGURE 2.

if money received == $2.50 && the button pressed is "Diet Coke"
release Diet__Coke
[

Figure 1: Vending Machine Contract

217

https://cybersecurityjournal.info/ | August 2025 Advances in Knowledge-Based Systems, Data Science, and Cybersecurity

Seller Organization Buyer Organization

ORG1 car contract: ORG2
query (car) :
get (car) ;
return car;
application: application:
PP transfer (car, buyer, seller): PP:
seller = ORGI; get (car) ; - b . seller = ORG2;
buyer = ORG2; Cai'(ownff = buyer; buyer = ORG1;
transfer (CAR1, seller, buyer); puticar); transfer (CAR2, seller, buyer);
return car;

update (car, properties):

get (car);

car.colour = properties.colour;
put (car) ;

return car;

Figure 2: Selling a car using a smart contract
2.3.1 Smart contract compilation

We use a special language program for smart contracts: Selidity, [5, 10]. An example of a
Solidity code [16], can be seen in 3, and the entire compilation process[16], in 4 We can see

pragma solidity 0.8.17;

f**
* @title Test
* @dev Sets and Gets a uint variable called Pointer

*f

contract Test{
uint256 public pointer;

constructor() {
pointer = 100;

¥

function setPointer(uint256 _num) public {
pointer = _num;

¥

f**

* @dev Return owner address
* @return address of owner
*/f
function getPointer() external wview returns (uint256) {
return pointer;
y

Figure 3: Solidity source example

that there are two outcomes for the output of the compilation process :

218

https://cybersecurityjournal.info/ | August 2025 Natan Katz

Solidity Smart
Contract

l

Compilation

Bytecode ABI

Cern be cotegorized into

Creation Bytecode Runtime Bytecode

Figure 4: Smart contract’s compilation chain

* Application Binary Interface ABI This interface clarifies which functions and which parame-
ters the contract uses [10, 16, 17, 17]

* Bytecode - A hexadecimal string that encodes the source code. The developer uploads the
bytecode to the EVM. The EVM extracts the opcode instructions [10, 16]. An example opcode
can be seen [16], in S respectively.

2.3.2 Gas and infinite loops

We described the potential problem that Ethereum may encounter with heavy calculations
in general and infinite loops in particular. In this section, we will discuss how Ethereum
handles this obstacle [5, 6, 10]. Every source code is an ordered collection of commands.
Thus, Ethereum uses the concept of Gas [5]. The idea is that a user pays for every requested
computation command on the network. Ethereum publishes a pay list that assigns a gas fee
for each command. This approach provides two significant benefits:

* There are no infinite loops- A user can run a contract only if she can budget the required
computational resources

* Code is written efficiently

219

https://cybersecurityjournal.info/ | August 2025 Advances in Knowledge-Based Systems, Data Science, and Cybersecurity

[00] PUSH1 80
[02] PUSHL 40
[04] MSTORE

[05] CALLVALUE
[06] DUP1

[07] ISZERO

[08] PUSH2 @0l@
[Gb] JUMPI

[0c] PUSH1 @@
[0e] DUP1

[0F] REVERT

[18] JUMPDEST

[11] POP

[12] PUSH1 64
[14] PUSH1 @@
[16] DUP2

[17] SWAP1

[18] SSTORE

[19] POP

[1a] PUSH2 017f
[1d] DUP1

[1e] PUSH2 0028
[21] PUSH1 @@
[23] CODECOPY

[24] PUSH1 @@
[26] RETURN

[27] INVALID

Figure 5: Opcode’s Insurrections

Gas is, therefore, a mandatory component for achieving Turing completeness in a blockchain.
This concept emphasizes that Ethereum (in contrast to Bitcoin) was developed as a compu-
tational platform, not merely a cryptocurrency.

3. MACHINE LEARNING

Machine learning ML is not a new discipline. Researchers used tools such as decision trees
and probabilistic modeling for decades [18, 19]. The usage of ML has been boosted during
the last years by the Deep learning DL revolution that lately reached a highlight with the
launch of ChatGPT [1]. While tools like Random Forest [18—20], and XGBoost [19, 21, 22],
are known to most researchers, in this section, I will describe some of the deep learning tools

220

https://cybersecurityjournal.info/ | August 2025 Natan Katz

that we used. In this paper, we utilize transformer textual models [23, 24], and autoencoders
[19].

3.1 Bayesian Network

Causal inference is a rising research domain [25-27]. It offers promising results in various
disciplines of applied science. Some of its tools can enhance the methodologies by which
researchers approach data [25, 26]. A core object in causal inference is the Directed Acyclic
Graph DAG, [25, 26]. It represents the actual relations between variables and allows us
to perform causal analysis 6. Moreover, the power of DAG is in uncovering latent rela-

Figure 6: Directed Acyclic Graph - AG

tions between the raw variables and improving the model’s explainability [28]. However,
in real-world scenarios, the directions of the arcs are often unknown; thus, researchers use
probabilistic tools to approximate them. Bayesian networks are such a tool [28-30]: they
denoise the data and uncover the mutual influence between the observed variables (FIGURE
7). In the following sections of this paper, we will describe Ethereum ML research that we

Figure 7: Bayesian Network [31]

did using the described tools for solving some of the problems that we discussed in section

4. REENTRANCY ATTACK-REAL WORLD EXAMPLE

We saw in that indeed smart contracts are a powerful tool. Nevertheless, as with any other
technology, it comes with its “novel” risks. Smart contracts are used in Ethereum transac-
tions; hence, their vulnerabilities can be exploited in these transactions. Since it is merely a
source code, we can suspect that if we don’t develop it properly, we may suffer drawbacks
[8, 10, 32—-34]. One of the most common attacks on smart contracts is the reentrancy attack.
In such an attack, a fund transaction takes place. Rather than updating the paying account

221

https://cybersecurityjournal.info/ | August 2025 Advances in Knowledge-Based Systems, Data Science, and Cybersecurity

and transferring the funds in the following step, the contract transfers the funds before. As a
result, one can call the transfer function infinitely many times and transfer the entire money
of the victim. A graphical scenario of reentrancy attack is presented in FIGURE. 8. This
scheme is presented in [32, 33].

Contract 8 calls back into Contract A
before it is done updating balances

2
Contract A {—\ Contract B

checkbalance() fallback function()

sendfunds ()
updatebalance(]

/

Sendingfunds.

Figure 8: Reentrancy Scheme

We present a Solidity implementation of the reentrancy attack in FIGURES 9 and 10, [32].
The most famous reentrancy attack is the DAO Attack. It took place in 2017. 60

contract DepositFunds
mapping(address => uint) public balances

function deposit() public payable
balances|msg.sender| += msg.value

function withdraw() public
uint bal = balances[msg.sender
require(bal > @

bool sent = msg.sender.call{value: bal
require(sent, "Failed to send Ether"

balances[msg.sender| = @

Figure 9: Deposit Function

contract Attack
DepositFunds public depositFunds

constructor(address _depositFundsAddress
depositFunds = DepositFunds(_depositFundsAddress

// Fallback is called when DepositFunds sends Ether to this
contract.
fallback() external payable
if (address(depositFunds) . balance >= 1 ether
depositFunds . withdraw:

function attack() external payable
reguire(msg.value >= 1 ether
depositFunds . deposit{value: 1 ether
depositFunds .withdraw

Figure 10: Reentrancy Attack function

million dollars were stolen. Moreover, the primary outcome of this attack was a hard fork

222

https://cybersecurityjournal.info/ | August 2025 Natan Katz

of Ethereum, resulting in two separate communities. One can learn about the impacts of this
attack on Ethereum [5, 6, 8]. DAO was followed by additional attacks, such as [32] :

» Uniswap/Lendf.Me hacks (April 2020) — 25 million dollars, attacked by a hacker using reen-
trancy.

* The BurgerSwap hack (May 2021) — More than seven million dollars were attacked, due to a
reentrancy exploit.

5. RESEARCH METHODOLOGY

We present three ML studies that focus on Ethereum:

» Malicious detection based on smart contract opcode using GPT2 [35-37].
» Malicious detection based on smart contract Solidity source-using CodeLlama [38—4(].

» Malicious transaction detection, which is based mainly on gas-driven variables and uses clas-
sical ML tools (mainly XGBOOST).

In the last one, we assumed that two:

* The user is willing to pay a high amount of gas to place the transaction as quickly as possible

» The user may choose different approaches to use common smart contract functions

5.1 Malicious Data

Since we develop detection models, we need labeled data for both populations (e.g., benign
and malicious). While there are many benign smart contract source codes ([41]), Malicious
sources are not always available:

* People don’t leave traces such as Solidity sources or their ABI when they act maliciously.
» With the absence of prior knowledge, one can hardly label a contract as malicious.

* Transactions are rarely labeled as malicious

These obstacles reveal a flaw in Ethereum design: A smart contract developer must upload
only the Opcode. Solidity source and ABI are not mandatory and don’t require explicit
community support. This causes difficulty in collecting data, but moreover, it undermines the
network’s decentralized ethos. Nonetheless, to overcome this “’data issue,” we used common
websites such as [42, 43]. that indicate when contracts are suspicious, and decompiled their
Opcode. The training results that we describe below indicate that our model generalized the
information well,

223

https://cybersecurityjournal.info/ | August 2025 Advances in Knowledge-Based Systems, Data Science, and Cybersecurity

6. THE OPCODE PROJECT

6.1 Smart Contracts’ Detection

Malicious detection of smart contracts has already been done [41]. This approach is benefi-
cial:

» The code is easy to disassemble from the bytecode

* The commands are human-readable, thus LLMs can handle them

» We can detect statistical patterns and therefore gain explainability [41].

To achieve our goal, we used a text generation model- GPT2 [36, 37]. We had 10k benign
smart contracts and about 800 malicious ones. Namely, we suffer from an imbalanced dataset.
Prior to fine-tuning the model, we measure its performance 11 One can see that the detection

104 --- No skill
Logistic

0.8

True Positive Rate
° °
> o

°
N

°
°

Figure 11: GPT2 False Positive Vs. recall

rate is nearly random. We use GPT2 as our initial model and fine-tune it. During our early
trials, we simply flattened the contracts to obtain poor results. We realized that truncating
the prefix and restricting the length to 600 commands (with padding if needed) improved our
performance, as shown in FIGURE12.

10- o

08+

=
=l

True Positive Rate
o
=

024 |

F === Nao Skill
o4 ¥ =— Logistic

0.0 0.2 04 06 0.8 10
False Positive Rate

Figure 12: Trained GPT2 False Positive Vs. recall

224

https://cybersecurityjournal.info/ | August 2025

=,
*_
\ M'E‘ e _

Ry, ‘ T~
3 \ S
Ry] @ o

JQ\ &
\\
N
*l
(a) Malicious DAG
I
P
@& »
B 7_\‘/’/’/_ =
//// il
/// -
-
T
/7,/
@

(b) Benign DAG

Figure 13: DAGs Comparison

6.2 Opcode Graphs

In addition to a good prediction model, ML Cyber projects often require a coherent explain-
ability mechanism. While we don’t have features, the Opcode commands can be informative.
For studying patterns in these commands, we used Python’s bnlearn [30]. to generate char-
acteristic DAGs for each of the contract populations. These DAGs are presented in FIGURE
13.

. THE SOLIDITY PROJECT

Motivated by the Opcode project, we further study a Solidity detection model. As we ex-
plained above, malicious source codes are less available than Opcode. To overcome this
absence, we used websites such as Chainabuse [42]. and recompiled Opcode sources using
a web decompiler [44]. Our data includes about 100k benign contracts and about 2000 mali-
cious contracts with their (recompiled) Solidity sources. We used the Huggingface database
as our source of benign contracts [45].

225

Natan Katz

https://cybersecurityjournal.info/ | August 2025 Advances in Knowledge-Based Systems, Data Science, and Cybersecurity

7.1 Our KPIs
There are several common KPIs that data scientists use for assessing model performance:

* Accuracy- A metric that measures how accurately the model predicted. It is a beneficial metric
when the data is uniform. However, using accuracy as a metric is less informative when one
class (benign) has a much higher prevalence than the other.

* Precision- This metric measures the probability that a class detection is correct. Namely, the
probability that a contract is benign given that the model declared ’benign”.

* Recall- This metric measures the probability of detecting a certain class.
* F1 The harmonic average of precision and recall.
* confusion Matrix

Actual \ Predicted | Positive Negative
Positive TP FN
Negative FP TN

Table 1: Confusion matrix: T-True, F-False, P-Positive, N-Negative

Metrics like accuracy, precision, and F1-score require selecting a specific decision threshold.
While this provides insight into model performance at that particular point, it discards valu-
able information about how the model behaves across other thresholds. In contrast, the ROC
curve captures the model’s performance across the full range of thresholds, offering a more
comprehensive and threshold-independent evaluation. A reader who is interested in having
a benchmark needs to consider the following:

* Metrics such as F1 precision require a clear, coherent threshold.

* In common applications such as image classification or sentiment analysis, the model decides
upon the maximum probability criterion. One must not follow this criterion in asymmetric
applications, such as malicious detection

Finally, ROC indicates the delta between the classes’ intrinsic distribution [46], Therefore,
we present the ROC curves, and the system user can decide about their preferred threshold
(namely, which class wins in a single inference step), as well as the working point.

7.2 CodeLlama

We aim to train a model that is fed by Solidity sources and outputs a binary decision. Llama
of Meta [38, 39]. offers code generative models, specifically CodeLlama, which was trained
on Java and Python sources [40]. For modifying such a model into a classifier, we require
the following:

226

https://cybersecurityjournal.info/ | August 2025 Natan Katz

* Modifying the architecture by adding a proper matrix

* Fine-tune the model

The former is described in [47]. The latter is required since the model wasn’t trained on
Solidity sources or malicious code. Our focus is therefore on classifying Solidity contracts.

Early trials achieved about 70 percent accuracy. However, this is a 7B model with very little
data. Since we cannot increase our dataset, we can decrease the model.

7.3 The Solidity Generator

We found a 500M Solidity generator model [48], which is based on BERT [49]. This model
was trained on [50]. We followed the steps of [47]. to modify its architecture. The results
are presented in 14 In the following graph, the X-axis represents precision, and the Y-axis,

Models Comparision - Precsion/Recall

_~

The Base Model
Precision

Figure 14: The Solidity Classification Model

the recall. The base model is the model before our fine-tuning. We can see that on the one
hand, the results are not outstanding due to the absence of data. On the other hand, we can
observe the improvement due to the fine-tuning process (Simply, note the gaps between the
curves, or measure actual points).

7.3.1 Discussion

The performances indicate that our data is “trainable”, namely, a DL tool can detect sta-
tistically whether a smart contract is malicious or not. Moreover, the precision-recall graph
shows that the knowledge was scattered across both classes. However, to achieve commercial
performances, we must increase our data, particularly malicious contract sources. Testing
different code models may improve the results. Since the concern in Ethereum is transactions,
detecting a malicious contract is not only an objective but also a supporting tool. In the next
section, we discuss transaction detections where smart contracts can be used.

8. ML STUDY OF MALICIOUS TRANSACTIONS

In this section, we present a transaction detection model. We recall that we restrict ourselves
to transactions in which the receiver is a smart contract. The model’s features are based

227

https://cybersecurityjournal.info/ | August 2025 Advances in Knowledge-Based Systems, Data Science, and Cybersecurity

on the structure of gettransaction and gettransactionreceipt by the API of Python’s web3
package [S1].

8.1 Data

As in the previous section, we need labeled data of both malicious and begin transactions.
For this purpose, we used websites such as de-fi, chainabuse [43, 52]. We collected about
15K malicious transactions. We sampled benign transactions from two sources:

* ”Modern” blocks.

* Blocks that contain malicious transactions (to overcome temporality)

8.1.1 Our features

Our research focuses on variables that describe aspects of the gas bid-ask and the input
functions. We briefly describe some of the variables:

effectiveGasPrice -The effective gas price that was paid

cumulativeGasUsed - The amount of gas in the block until the relevant transaction,

* to - Obvious field . Here, we need to verify that it is a contract.

* logs The number of logs that appeared during the execution of the smart contract.

» gasUsed/gasPrice The gas was used in the transaction and its cost in wei.

* type It indicates the mechanism of Ethereum that influences the gas pricing (EIP-1559.
* gas -Maximum amount of gas that the sender is willing to pay

* maxFeePerGas- Amount of gas that one is willing to pay for computational resources

* maxPriorityFeePerGas- Maximum tip one is willing to pay

The model’s input features are either these variables or their aggregators. The motivation
to focus on gas-driven variables is derived from the assumption that a potential culprit will
offer a high amount of gas to execute their transactions.

8.2 The Model

Since we are using tabular data, the common tool is XGBOOST [21, 22] We trained the
XGBOOST model and got the following ROC: In addition, we present the feature importance
of the xgboost model: In this graph, the width of the bar indicates the importance of the
variable in the model’s decision, thus it is a coherent explainability metric. One can see that
the gas aggregators are indeed achieving the greatest importance score, as we pre-assumed.

228

https://cybersecurityjournal.info/ | August 2025 Natan Katz

Gas Features model

|
o

e
©

e
@

=== No Skill
Logistic

Precision
e
<

o
o

e
i

04 =mmm e e e

Figure 15: ROC curve of the xgboost model

Feature Improtance for Gas variables

“eePerGas
-age_topic
>rice_gwei
gas_ratio
type

gas
gasUsed
#logs

v

PRIFFEE
Wxpriorgas
value
norm
mulGused

0.0 0.1 02 0.3 04 05 0.6

Figure 16: Feature Importance of our model

8.3 The 4bytes Analysis

Every transaction includes a field called input which is a hexadecimal signature that indicates
the functions of the smart contract and their inputs. There is a website 4bytes [53], that
provides a map from many of these hexadecimal signatures to the actual smart contracts’
functions. We wish to extract information about these functions and whether they influence
malicious transactions. We developed a mapping from the Hexa signatures to the functions.
We denote the latter hexdic. The following graph represents the distribution of signatures:
We can see that most of the known signatures appear only in benign transactions. But there

Functions' Distirubtion betwenn populations

Figure 17: Signatures’ histogram

are about 100 signatures that never appear in our 60k benign transactions. Hence, these
signatures are likely to be good malicious indicators.

229

https://cybersecurityjournal.info/ | August 2025 Advances in Knowledge-Based Systems, Data Science, and Cybersecurity

Valid Signatures

Benginn tmasrion Index1 Malicious trnasrion Index1

5000

4000 6000

3000

count
count

2000 3000

1000
1000
: ML

0 100 200 300 400 500 0 100 200 300 40 500
variable X (bin size = 5) variable X (bin size = 5)

(a) Valid Sig

Benign Prop 00 Malicios Prop

2500
6000

2000 5000

1500 4000
" 3000

1000
2000

500 4
1000

0.0 02 0.4 0.6 08 10 00 02 04 06 08 10
variable X (bin size = 5) variable X (bin size = 5)

(b) Prop valid

Figure 18: Valid signature Distribution

The next feature that we studied was the functions’ input length

We can see that these distributions are different; hence, the input length can be introduced
as a feature to the model The main point is not what distribution parameters are, but the idea
that these distributions are not from the same class. A future study can rigorously model each
of these distributions and provide their parameter tuples to the model. We trained the model
with our new features and obtained the following results: We add the feature importance as
well: It can be seen that the results are slightly better. We can explain it by the fact that
many transactions have no ABI. Nonetheless, it emphasizes the Ethereuem’s flaw, which we
discussed that developers are free from presenting their sources

8.4 Deep learning Early Study

As we discussed in the previous sections, it is often difficult to have malicious contracts.
Thus, a different approach can be studied: We use an auto-encoder to train a representation
of the benign contract and consider the malicious contracts as anomalies. Following such

230

https://cybersecurityjournal.info/ | August 2025 Natan Katz

WithaBytes Features

0.9

0.8

H -—- No Skill
3 07 Logistic
06
05

[

Recall

Figure 19: Model’s ROC with 4bytes

Feature Improtance Including 4bytes

rGas
topic
gwei
type
norm
ratio
gas
Hogs
Used
salue

rgas
FFEE
used

0.‘0 O.‘l B_‘Z 0‘3 014 0'5 0:6
Figure 20: Model’s Features’ importance with 4bytes

training, we projected our data on the three components of the PCA benign subspace [54], as
shown in FIGURE21 :

We can observe that a separation between the malicious and the benign takes place. A further
step is to learn the distribution of coefficients from benign contracts. This enables us to assign
a p-value to each malicious contract, quantifying its rarity under the benign distribution. One
can use a common anomaly detection tool such as Isolation-forest [55].

9. SUMMARY AND FUTURE STEPS

We have presented several projects that use ML to handle maliciousness in Ethereum. This
tool seems to be beneficial on various levels. Following our work, the next natural steps need
to focus on two directions:

* Improving the data collection methodology. In particular, malicious contracts.

* Finding novel methods to exploit LLMs to solve Web3 tasks in general and blockchain security
in particular,

231

https://cybersecurityjournal.info/ | August 2025 Advances in Knowledge-Based Systems, Data Science, and Cybersecurity

Subsbapce 012

= Malicious
e Benign

(a) Components 0 1 2

Subsbapce 4 2 3

* Malicious
- Benign

(b) Components 2 3 4

Subsbapce 401

- Malicious
- Benign

0.365

0.360

0.355
0.350
0.345
0.340
0.335

(c) Components 0 1 4

232
Figure 21: Transactions Projected on PCA

https://cybersecurityjournal.info/ | August 2025 Natan Katz

* Improving the transactions detection models

» Perform a better usage of the 4-byte information (using anomaly detection and probabilistic
methods)

The code of this project can be found here [56].

10. ACKNOWLEDGEMENT

I would like to thank Amit Levin for bringing forth the initial idea that inspired this work.
My gratitude goes to Roma Zaikin, Dikla Barda, and Oded Vanunu for their valuable clarifi-
cations on key topics. I am especially grateful to Avishay Shraga for his in-depth, profound
discussions and innovative ideas, which greatly enriched this research. Finally, I would like
to thank our team at LuminAl Security for their tireless efforts.

References

[1] https://chat.openai.com/

[2] https://openai.com/dall-e-2

[3] https://en.wikipedia.org/wiki/Sentiment _analysis

[4] https://etherscan.io/

[5] https://www.udemy.com/course/build-your-blockchain-az

[6] V. Buterin. DAOs, DACs, DAs and More: An Incomplete Terminology Guide. 2014. Available at
- https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-incomplete-terminology-
guide

[7] A. Moskov . What is Ethereum - The Ultimate Beginner’s Guide. 2017.
https://coincentral.com/what-is-ethereum-the-ultimate-beginners-guide

[8] M. Leising .The Ether Thief 2017. A vailable at :https://www.bloomberg.com/features/2017-the-
ether-thief

[9] https://www.freecodecamp.org/news/smart-contracts-for-dummies
[10] Vanunu, Zaikin, Barda . Cyber and Hacking in the Worlds of Blockchain and Crypto. 2023
[11] https://ethereum.org/en/what-is-ethereum/

[12] M. Custodio Smart Contract for Dummies. 2017. Available at:
https.://www.freecodecamp.org/news/smart-contracts-for-dummies-albale0b9575/

[13] https://cryptorunner.com/what-is-ethereum/

[14] https://ethereum.org/se/developers/docs/smart-contracts/

233

https://cybersecurityjournal.info/ | August 2025 Advances in Knowledge-Based Systems, Data Science, and Cybersecurity

[15] https://coinloan.io/blog/smart-contract-platforms-overview

[16] https://medium.com/coinmonks/evm-part-ii-the-journey-of-smart-contracts-from-solidity-
code-to-bytecode

[17] Louis Abraham'’s Home Page, 2022. Calling a Contract Without ABI on Ethereum
https://louisabraham.github.io/articles/no-abi

[18] R. O. Duda, P. Hart, D. G. Stork Pattern Classification. Wiley, 2000.
[19] https://cs229.stanford.edu/

[20] https://towardsdatascience.com/understanding-random-forest

[21] https://xgboost.readthedocs.io/en/stable/

[22] https://xgboost.readthedocs.io/en/stable/tutorials/model. html

[23] Mikolov T, Karafiat M, Burget L, Cernocky J, Khudanpur S. Recurrent Neural Network Based
Language Model. Ininterspeech 2010;2:1045-1048.

[24] Sutskever I, Vinyals O, Le QV. Sequence to Sequence Learning With Neural Networks. 2014
https://arxiv.org/pdf/1409.3215

[25] A. Molak. Causal Inference and Discovery in Python: Unlock the Secrets of Modern Causal
Machine Learning With DoWhy, EconML, PyTorch and More. Packt Publishing.2023

[26] https://www.youtube.com/c/BradyNealCausallnference
[27] https://medium.com/p/4dc706680294

(28] https://medium.com/towards-data-science/explainability-using-bayesian-networks-
4dc706680294

[29] https://www.bnlearn.com/examples/

[30] https://pypi.org/project/bnlearn/

[31] https://www.uib.no/en/rg/mil/119695/bayesian-networks

[32] https://hackernoon.com/hack-solidity-reentrancy-attack

[33] https://cryptomarketpool.com/reentrancy-attack-in-a-solidity-smart-contract/
[34] https://medium.com/immunefi/the-ultimate-guide-to-reentrancy-19526f105ac

[35] Radford A, Narasimhan K, Salimans T, Sutskever I. Improving Language Understanding by
Generative Pre-Training 2018.

[36] Radford A, Wu J, Child R, Luan D, Amodei D. Language Models Are Unsupervised Multitask
Learners. OpenAl blog. 2019;18:9.

[37] https://huggingface.co
[38] https://ai.meta.com/llama/

[39] huggingface.co/docs/transformers/model_doc/llama?

234

https://cybersecurityjournal.info/ | August 2025 Natan Katz

[40] https://huggingface.co/docs/transformers/main/model_doc/code llama

[41] https.//forta.org/blog/how-fortas-predictive-mil-models-detect-attacks-before-exploitation/
[42] https://www.chainabuse.com/

[43] https://de.fi/

[44] https://ethervm.io/decompile

[45] https://huggingface.co/datasets/mwritescode/slither-audited-smart-contracts

[46] Natan Katz and Uri Utai. Parametric PDF for Goodness of Fit. Advances in Artificial
Intelligence and Machine Learning 2023;3:47.

[47] N Katz, CodeLlama FineTuning for Classification, Available at :https://medium.com/@natan-
katz/codellama-classification-finetuning-28fa5546f64f

[48] https://huggingface.co/ckandemir/solidity-generator

[49] Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. 2019. Arxiv preprint : https://arxiv.org/pdf/1810.04805

[50] https://huggingface.co/datasets/mwritescode/slither-audited-smart-contracts

[51] https://web3py.readthedocs.io/en/stable/

[52] https://www.chainabuse.com/

[53] https://www.4byte.directory

[54] https://builtin.com/data-science/step-step-explanation-principal-component-analysis
[55] https://scikit- learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

[56] https://github.com/natankl/finetunecodellama2binary/tree/main

235

	INTRODUCTION
	SMART CONTRACTS
	What is Ethereum?
	Ethereum Virtual Machine
	What is a Smart Contract?
	Smart contract compilation
	Gas and infinite loops

	MACHINE LEARNING
	Bayesian Network

	REENTRANCY ATTACK-REAL WORLD EXAMPLE
	RESEARCH METHODOLOGY
	Malicious Data

	THE OPCODE PROJECT
	Smart Contracts' Detection
	Opcode Graphs

	THE SOLIDITY PROJECT
	Our KPIs
	CodeLlama
	The Solidity Generator
	Discussion

	ML STUDY OF MALICIOUS TRANSACTIONS
	Data
	Our features

	The Model
	The 4bytes Analysis
	Deep learning Early Study

	SUMMARY AND FUTURE STEPS
	ACKNOWLEDGEMENT

